Publications

Burns CG*, Burns CE*. Wnt signaling sets the pace. Developmental Cell 2019. 50(6): 675-676. *co-corresponding authors. 

https://reader.elsevier.com/reader/sd/pii/S1534580719307312?token=7EB2F07731C41D782D3F33E258DD9889A2B4EE36CE8F177D2FA62F39F2916B6AF6974A9DA3D4EC266FF370D68D3013A2

 

Akerberg AA, Burns CE*, Burns CG*, Nguyen C*. Deep learning enables automated volumetric assessments of cardiac function in zebrafish. Disease Models & Mech. 2019. 12(10):  *co-corresponding authors. 

https://dmm.biologists.org/content/dmm/12/10/dmm040188.full.pdf

 

Ben-Yair R, Butty V, Busby M, Qiu Y, Levine SS, Goren A*, Boyer LA*, Burns CG*, Burns CE*. H3K27me3-mediated silencing of structural genes is required for zebrafish heart regeneration. Development. 2019. 146(19):1-10.  *co-corresponding authors.  https://dev.biologists.org/content/develop/146/19/dev178632.full.pdf

Akerberg AA, Burns CE, Burns CG. Exploring the activities of RBPMS proteins in myocardial biology. Pediatric Cardiology 2019. 1-9.  https://rdcu.be/bOhgz

Galvez-Santisteban M, Chen D, Zhang R, Serrano R, Nguyen C, Zhao L, Nerb L, MasutaniEM, Vermot J, Burns CG, Burns CE, Del Alamo JC, Chi NC. Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming. eLife. 2019. 25(8): 44816. https://elifesciences.org/articles/44816

 

Zhao L, Ben-Yair R, Burns CE*, Burns CG*. Endocardial Notch signaling promotes cardiomyocyte proliferation in the regenerating

zebrafish heart through Wnt pathway antagonism. Cell Reports. 2019. 26(3): 546-554. *co-corresponding authors https://www.cell.com/cell-reports/fulltext/S2211-1247(18)31978-8

 

Guner-Ataman B, Gonzalez-Rosa JM, Shah HN, Butty VL, Jeffrey S, Abrial M, Boyer LA, Burns CG*, Burns CE*. Failed progenitor specification underlies the cardiopharyngeal phenotypes in a zebrafish model of 22q11 deletion syndrome. Cell Reports. 2018. 24(5): 1342-1354. * co-corresponding authors. https://www.cell.com/action/showPdf?pii=S2211-1247%2818%2931074-X

 

Gonzalez-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE*, Burns CG*. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Developmental Cell. 2018. 44(4): 433-446. *co-corresponding authors. http://www.cell.com/developmental-cell/fulltext/S1534-5807(18)30056-X

 

Natarajan N, Abbas Y, Bryant DM, Gonzalez-Rosa JM, Sharpe M, Uygur A, Cocco-Delgado LH, Ho, NN, Gerard NP, Gerard CJ, Macrae CA, Burns CE, Burns CG, Whited JL, Lee RT. Complement receptor C5aR1 plays an evolutionarily conserved role in successful cardiac regeneration. Circulation 2018; 137:2152-2165. https://www.ahajournals.org/doi/epub/10.1161/CIRCULATIONAHA.117.030801

 

Paffett-Lugassy N^, Novikov N^, Jeffrey S, Abrial M, Guner-Ataman B, Sakthivel S, Burns CE*, Burns CG*. Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field. Development. 2017. 144: 4616-4624.  ^ co-first authors; * co-corresponding authors. http://dev.biologists.org/content/early/2017/10/20/dev.153411

Gonzalez-Rosa JM, Burns CE, Burns CG. Zebrafish heart regeneration: 15 years of discoveries. Regeneration. 2017. 4(3):105-123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617908/pdf/REG2-4-105.pdf

 

Abrial M^, Paffett-Lugassy N^, Jeffrey S, Jordan D, O’Loughlin E, Frederick CJ, Burns CG*, Burns CE*. TGF-b Signaling is Necessary and Sufficient for Pharyngeal Arch Artery Angioblast Formation. Cell Reports. 2017. 20: 973-983. ^ co-first authors; * co-corresponding authors

https://www.cell.com/action/showPdf?pii=S2211-1247%2817%2930939-7

 

Manalo T, May A, Quinn J, Lafontant DS, Shifatu O, He W, Gonzalez-Rosa JM, Burns CG, Burns CE, Burns AR, Lafontant PJ. Differential Lectin Binding Patterns Identify Distinct Heart Regions in Giant Danio and Zebrafish Hearts. J Histochem Cytochem. 2016. 64(11): 687-714. https://journals.sagepub.com/doi/pdf/10.1369/0022155416667928

Han P, Bloomekatz J, Ren J, Zhang R, Grinstein JD, Zhao L,  Burns CG, Burns CE, Anderson RM, Chi NC. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature. 2016; 534:700-704. https://www.nature.com/articles/nature18310.pdf

 

Jahangiri L, Sharpe M, Novikov N, Gonzalez Rosa JM, Borikova A, Nevis K, Paffett-Lugassy N, Zhao L, Adams M, Guner-Ataman B, Burns CE*, Burns CG*. The AP-1 transcription factor component Fosl2 potentiates the rate of myocardial differentiation from the zebrafish second heart field. Development. 2016. 143:113-122. *co-corresponding authors. https://dev.biologists.org/content/develop/143/1/113.full.pdf

Mosimann C*, Panakova D*, Lawson K, Davidson AJ, Musso G, Werdich A, DiBiase A, Nevis K, Zhou Y, Burger A, Carr LA, Khaled Sabeh M, Burns CE, Burns CG, MacRae CA, Zon LI. Chamber identity programs drive early functional partitioning of the heart. Nature Communications. 2015. 6:8146. *co-first authors. https://www.nature.com/articles/ncomms9146.pdf

Mahmoud AI*, O’Meara CC*, Gemberling M, Zhao L, Bryant DM, Zheng R, Gannon JB, Cai L, Choi W, Egnaczyk GF, Burns CG, Burns CE, MacRae CA, Poss KD, Lee RT. Nerves regulate cardiomyocyte proliferation and heart regeneration. Developmental Cell. 2015 34(4):387-99.

*co-first authors. 

https://reader.elsevier.com/reader/sd/pii/S1534580715004244token=752D40DA3A961E9EC43C5E93A5DBFF87940056EC9903154CE2583105E70CF7304F356B0D92B63FF3F0CBB5FE89E8FA1D

Harrison MR, Bussmann J, Huang Y, Zhao L, Osorio A, Burns CG, Burns CE, Sucov HM, Siekmann AF and Lien CL. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish. Developmental Cell. 2015. 33(4):442-54. 

https://www.sciencedirect.com/science/article/pii/S1534580715002439?via%3Dihub

Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B, MacRae CA, Lee RT, Burns CG*, Burns CE*. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl. Acad. Sci. USA. 2014. 111:1403-8. * co-corresponding authors.  https://www.pnas.org/content/111/4/1403.long

Paffett-Lugassy N, Singh R, Nevis KR, Guner-Ataman B, O'Loughlin E, Jahangiri L, Harvey RP, Burns CG*, Burns CE*. Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nat Cell Biol. 2013; 15:1362-9. * co-corresponding authors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864813/pdf/nihms525961.pdf

Nevis KR, Obregon P, Walsh C, Guner-Ataman B, Burns, CG*, Burns CE*. Tbx1 is required for second heart field proliferation in zebrafish. Developmental Dynamics. 2013; 242:540-9.  * co-corresponding authors. https://doi.org/10.1002/dvdy.23928

Guner-Ataman B, Paffett-Lugassy N, Adams MA, Nevis KR, Jahangiri L, Obregon P, Kikuchi K, Poss KD, Burns CE*, Burns CG*. Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development. 2013; 40:1353-1363. * co-corresponding authors. 10.1242/dev.088351

Zhou Y, Cashman TJ, Nevis KR, Obregon P, Carney SA, Liu Y, Gu A, Mosimann C, Sondalle S, Peterson RE, Heideman W, Burns CE*, Burns CG*. Latent TGFb binding protein 3 identifies a second heart field in zebrafish. Nature. 2011; 474:645-8. *co-corresponding authors. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319150/pdf/nihms365514.pdf

Deacon DC, Nevis KR, Cashman TJ, Zhou Y, Zhao L, Washko D, Guner-Ataman B, Burns CG*, Burns CE*. The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis. Development. 2010; 137:1887-96. * co-corresponding authors. https://dev.biologists.org/content/develop/137/11/1887.full.pdf